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Abstract 
Currently there is great interest in the utility of deep neural networks (DNNs) for the 

physical layer of radio frequency (RF) communications. In this manuscript, we describe a 

custom DNN specially designed to solve problems in the RF domain. Our model leverages the 

mechanisms of feature extraction and attention through the combination of an autoencoder 

convolutional network with a transformer network, to accomplish several important 

communications network and digital signals processing (DSP) tasks. We also present a new open 

dataset and physical data augmentation model that enables training of DNNs that can perform 

automatic modulation classification, infer and correct transmission channel effects, and directly 

demodulate baseband RF signals. 
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Engineering the fifth generation (5G) of mobile communications networks is uniquely 

challenging due to the complexity of the typical modern wireless radio frequency (RF) 

environment. Due to the ubiquity of mobile and wireless devices, a typical 5G system needs to 

handle a huge volume of complex, heterogeneous data, presenting new obstacles in the allocation 

and management of network resources1.  

 

Currently, there is great interest in the feasibility of embedding machine learning (ML) 

directly into a communications network to combat issues that arise in a crowded and diverse RF 

environment. Deep neural networks (DNNs) are currently the dominant ML architecture and 

have revolutionized ML model performance in the last decade across many domains including 

computer vision (CV)2–7, natural language processing (NLP)8–11, and content recommendation12–

14.  

 

DNNs have been applied with varying degrees of success to several tasks in the physical 

layer of the RF communications domain15,16. Previous studies have primarily focused on 

automatic modulation classification using a variety of different DNN architectures17. Common 

ML models used for image classification in the CV domain have also proven effective for 

modulation classification in the RF domain, such as standard convolutional neural networks 

(CNNs)18 and residual neural networks (ResNets)17. Limited research has been conducted on the 

efficacy of model architectures that are more specialized to the RF domain by using long short-

term memory networks (LSTMs) for modulation type classification19,20. The LSTM architecture 

is “time-aware” and has proven invaluable in the analysis of time-series data across a number of 

domains21–23. 

 

Previous studies have shown the viability of using DNNs for digital RF signal processing. 

Signal demodulation using several different ML architectures has been demonstrated under a 

limited range of conditions24–29. Completely learned DNN end-to-end communications systems 

have been demonstrated30,31, but these systems can be difficult to train and may require complex 

protocol schemes to enable assured communication links. In general, research combining ML 

with RF is still nascent, both in assessing what tasks ML can accomplish or improve upon and in 

developing tools aligned with the RF modality. 

 

In this manuscript we outline a novel deep learning architecture, custom-designed for 

various RF communications network tasks. We show that DNNs can be used to directly 

demodulate digital baseband signals with high accuracy. We also demonstrate the first use of 

deep learning networks for several digital signal processing tasks, including inference of key 

signal properties and transmission channel and parameters. 

 

Supervised deep learning generally requires copious amounts of accurately labeled data 

in order to train models that perform at a high level. While an open dataset of RF signals does 

exist32, a majority of the effects that we are seeking to quantify are either not present or not 

labeled in the most commonly used open source RF data set. With this in mind, we designed our 

own dataset and physical transmission channel model in PyTorch for use in training models. 

 

Our custom dataset is generated using the framework outlined in Fig. 1(a) which 

schematically shows how data moves through a generic RF communications system. First, a 
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stream of random bits is generated at a virtual transmitter (Tx), and a non-return-to-zero (NRZ), 

time-domain encoding is created. The NRZ encoding is mapped onto one of 13 distinct 

constellations to create a complex baseband digital modulation signal. The baseband signal is 

then passed through a root-raised cosine (RRC) filter for pulse shaping. This final, filtered, 

baseband signal at the virtual transmitter is denoted Tx and is kept for future steps in the analysis 

pipeline. 

 

 
Fig. 1 A generic RF communications system, consisting of a transmitter (Tx), a receiver (Rx), 

and a transmission channel, with a simplified signal processing pipeline and example data is 

shown in (a). A data stream is used to generate a complex baseband signal at Tx which is used to 

modulate a radio frequency carrier wave. The modulated carrier is then sent to Rx though the 

transmission channel. A copy of the Tx baseband signal, perturbed by the transmission channel, 

is recovered from the modulated carrier received by Rx. After further processing, a copy of the 

data stream is recovered at Rx. Our machine learning (ML) models sit at Rx and take the channel 

perturbed baseband signal as input, as indicated by the green rectangle in (a).  Examples of 

complex baseband signals before (left) and after (right) propagation through a simulated 

transmission channel are shown in (b) for several different digital modulation schemes. 

 

 

In order to properly simulate a realistic RF environment, the Tx signal must propagate 

through a simulated transmission channel. The term “transmission channel” generally 

encompasses any effects that cause the signal at the receiver, denoted Rx, to be different from 

Tx. Our physical channel model includes the most important effects: local RF oscillator phase 

and frequency offset, additive white gaussian noise (AWGN), and Rayleigh fading (see Methods 

for more details). The choice of transmission channel parameters can be tuned to simulate a 

transmission channel that ranges from mild to harsh depending on how robust a model must be 

against the RF environment.  

 

Fig. 1(b) shows examples of Tx and Rx data for four different modulation types. Each 

data example is generated as needed and is accompanied by a suite of important labels and 
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metadata such as message bits, modulation type, transmission channel parameters, number of 

time samples per message symbol, etc. The custom design of the dataset and transmission 

channel allows us to perform a wide variety of communications network and digital signals 

processing tasks using supervised deep learning models. 

 

Because of their resounding success in the CV domain, a handful of DNN architectures 

(VGG, ResNet, etc.) are often immediately co-opted when building a ML model in a new domain. 

We propose a novel model, designed specifically for various tasks in the RF domain, referred to 

throughout as the “hybrid model” (Fig. 2). The hybrid model aims to improve performance for RF 

applications in two ways. First, the model learns a latent representation which is simultaneously 

used both for denoising/reconstructing the input baseband RF data and for some digital signal 

processing (DSP) task. This shared representation leads to solutions which inform one another and 

an improvement in performance. Second, we make use of a transformer network, which is 

particularly well-suited to solving problems in the time-domain8,9,33,34. 

 

 
Fig. 2 Schematic of the hybrid autoencoder/transformer model. The encoder takes a raw digital 

baseband signal, perturbed by a transmission channel, from a receiver (Rx) as input and 

compresses it into a latent representation, z. The decoder transforms the z back to the original 

shape of the input. The output of the decoder (Tx’) is used to reconstruct the unperturbed 

baseband signal originally sent by the transmitter (Tx) by minimizing the loss between Tx and 

Tx’. The latent vector is used as input for a transformer network followed by fully connected 

layers. The final output of the fully connected classifier layers (C) is trained by minimizing the 

loss between the classifier output and known labels for the data. Once trained, the output of the 

classifier is used to infer various properties about the underlying data and the transmission 

channel. 
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The hybrid model architecture is composed of an encoder/decoder pair (E/D) and a 

classifier network (C). The encoder network consists of convolutional neural network (CNN) 

layers which map an input baseband RF signal (Rx) onto a latent space representation (Z). The 

decoder network (D), another series of CNN layers, transforms Z into a reconstructed baseband 

RF signal. The output of D (Tx’) is a denoised and reconstructed RF signal. The latent 

representation is also used as input for C, the output of which is the predicted label of Rx for the 

network task at hand.  

 

Our classifier network uses a transformer (we use the reformer implementation35 of the 

transformer architecture) whose output is flattened and fed into fully connected neural network 

layers. The transformer, which has enabled great performance increases in the domain of NLP8,9, 

performs an all-to-all comparison of elements which implies a utility in the analysis of sequences 

or other data with long-range correlation, e.g. time series data33,34. To our knowledge, our proposed 

hybrid model is the first to combine an auto-encoder convolutional network with a transformer 

network to attempt to solve various tasks in the RF domain. 

 

Our custom synthetic dataset, coupled with a physical transmission channel model, allows 

us to use Rx baseband data as input for a DNN model and to use a wide variety of important signal 

and channel parameters, as well as the original Tx signal itself, as targets or labels (model outputs). 

Fig. 2 schematically outlines how the hybrid model is trained to perform the various RF 

communications network tasks presented throughout this manuscript. The Rx signal is used as 

input for the autoencoder network (a reasonable assumption for how a real-world ML 

communications system would function) and the Tx signal is used as the target for the decoder 

reconstruction loss function. The classifier network loss function uses the various signal and 

channel parameters as targets, depending on the task the model is being trained to perform. For 

more details on model training and loss functions, see Methods. 

 

Previous studies have been primarily focused on the task of automatic modulation 

classification17,19,20,36. As an initial proof of concept of the hybrid models capabilities, we train the 

model to predict the modulation type label of our simulated baseband RF signals under a 

particularly harsh transmission channel. For this experiment, we allow the phase offset to vary 

between 0-360 degrees, the frequency offset to vary up to 1% of the data rate, and the 

dimensionless Rayleigh fading parameter, , to vary between 0.1-1.0 (see Methods), with all 

parameters randomly generated for each data example. The results of this experiment are shown 

in Fig. 3. Because of our custom end-to-end data generation and channel simulation, we can easily 

measure the performance of the model for a given signal-to-noise ratio. Figs. 3(a) and 3(b) show 

confusion matrices at energy per symbol to noise power spectral density ratios of Es/N0 = 0 and 

10 dB, respectively. The curve in Fig. 3(c) shows the mean model accuracy, averaged across all 

modulation types at each noise level. For more details on data generation, transmission channel 

simulation, and model training, see Methods. 

 

Next, we turn our attention to a more novel DSP task using the hybrid model, directly 

inferring transmission channel parameters. To perform this task, we limit the input data strictly to 

messages of the quadrature phase-shift keying (QPSK) modulation type (a common digital  
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Fig. 3 Confusion matrices showing performance of the hybrid model at automatic modulation 

type classification for Es/N0 of 10 dB (a) and 0 dB (b). The curve in (c) shows the mean 

accuracy of the hybrid model across all classes for Es/N0 values between –30 to 40 dB. For high 

signal to noise ratios, the hybrid model has a mean accuracy of 98.7% when identifying the 

modulation type of an unknown signal, as shown in (c). 

 

 

modulation scheme used in many applications, including WiFi and Bluetooth®). We use a slightly 

less harsh (denoted medium) transmission channel than for the modulation classification task. 

Because of the four-fold rotational symmetry of the QPSK constellation, phase shifts of more than 

45 degrees are unresolvable from observations of the baseband signal alone. For this reason, we 

eliminate Rayleigh fading from the channel entirely (fading introduces a random phase shift to the 

baseband signal) and limit the carrier phase offsets to the range of 45 degrees.   

 

Results of the channel parameter regression are shown in Fig. 4. The hybrid model can 

simultaneously and explicitly regress the local oscillator phase offset (Fig. 4(a)), local oscillator 

frequency offset (Fig. 4(b)), and signal-to-noise level (Fig. 4(c)) for a wide range of these 

parameters. To our knowledge, this is the first demonstration of the use of a DNN to directly infer 

transmission channel properties. More experimental details, including information on model 

dimensions, initialization, and training, can be found in Methods.   

 

The results in Fig. 4 clearly show that the hybrid model can explicitly regress channel 

parameters. These parameters can then be used to reconstruct the original transmitted signal from 

the data at Rx using either a physical model or traditional analog electronics and signal processing 

methods. One key feature of the hybrid model is the encoder/decoder pair and the ability to denoise 

and reconstruct the original Tx signal. This implies that the model can implicitly perform the 

previously mentioned two-step process (learn channel parameters from Rx signal, then use them 

to transform Rx signal into Tx signal) in a single step (directly learn original Tx signal). Fig. 5 

shows example Rx, Tx, and reconstruction signals from the regression model discussed previously 

that illustrate this property. Figs. 5(a) shows the Rx (green lines), Tx (blue/orange lines), and Tx 

reconstruction (dashed black lines) for the in-phase and quadrature components, respectively, of 

an example QPSK signal. Fig. 5(c) shows the error between Tx and Tx reconstruction for both  
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Fig. 4 Regression of transmission channel parameters using hybrid model. Each training or 

validation example consists of a series of random bits, which is used to generate a baseband 

QPSK signal. This signal (Tx) is then put through a physical transmission channel model, 

resulting in a perturbed version of the original data (Rx). The hybrid model can accurately 

regress the relative phase offset (a) and the frequency offset, expressed as a percentage of the 

data rate, RD, (b) between Tx and Rx, as well as the amount of additive white gaussian noise 

(AWGN), expressed as the energy per symbol to noise power spectral density ratio, Es/N0, 

added to the signal from the transmission channel (c). 

 

 
Fig. 5 Reconstruction of a baseband QPSK signal using decoder layers of the hybrid model. As 

shown in figure 2, the hybrid model reconstructs the original transmitted signal (Tx) using the 

received signal (Rx) which has been degraded by the transmission channel. The in-phase (a) and 

quadrature (b) components for the Rx, Tx, and Tx reconstruction are shown. The residuals 

shown in (c), defined as the absolute difference between Tx and Tx reconstruction expressed in 

units of root mean square Tx amplitude, have a mean value of 7 percent. 
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components, scaled by the RMS amplitude of Tx, with a mean error of less than 8 percent (in these 

units). 

 

Fig. 6 shows the performance of a hybrid model trained to classify the total number of 

symbols in a message. For this task, we generate messages from all 13 modulation types, with a 

fixed total length (512 samples), and a variable number of symbols (between 16 and 32 symbols 

per message) and propagate the Tx signal through the harsh transmission channel used in the 

modulation classification task and discussed in Methods. Figs. 6(a) and 6(b) show the confusion 

matrices at unnormalized signal-to-noise ratios of 0 and -10 dB, respectively, with a logarithmic 

color scale. The curve in Fig 6(c) shows the mean accuracy across all classes at each SNR. We 

note that as the noise level increases and the model’s performance begins to degrade, erroneous 

predictions generally differ from the true value by one symbol, an intuitive result. 

 

 
Fig. 6 Confusion matrices showing performance of the hybrid model at inferring the number of 

symbols in a message for signal to noise ratios of 0 dB (a) and -10 dB (b), averaged over all 13 

modulation types. The curve in (c) shows the models accuracy (averaged over all possible 

modulation types and symbol numbers) at SNR values between –40 to 40 dB. For high signal to 

noise ratios, the hybrid model has a mean accuracy of 94.0% when inferring how many symbols 

are in an average message, as shown in (c). 

 

 

The final demonstration of the potential for DNNs in the digital signals processing realm 

is a model trained to demodulate digital messages directly from the Rx baseband data. For this 

task, we assume a mild channel that approximates a realistic RF communications setup in the 

presence of light to moderate Rayleigh fading. We assume that the Tx and Rx RF oscillators are 

tuned to one another (within a tolerance typical of average RF consumer equipment), and that the 

receiver uses a phase-locked Costas loop to limit the phase shift of the Rx signal. For more details 

on the mild channel, see Methods. 

 

Fig. 7 shows the hybrid model’s accuracy in identifying the symbols of a message when 

performing direct demodulation of BPSK, QPSK, and 16-QAM modulated input data. The 

performance of the model is excellent for all modulation schemes with over 99% accuracy for 

messages with low noise. In practice, messages sent in a Rayleigh channel are usually corrected at 
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the receiver using equalization and are specially designed using forward error correction (FEC) 

encoding and interleaving to combat the deleterious effects of fading. In contrast, our model is 

only assuming a phase-locked loop to correct phase and frequency offset with no other channel 

correcting measures being taken. Integration of FEC codes into a DNN demodulator is a ripe area 

for future research and could increase model performance to levels that are competitive with 

commercial communications systems. Nevertheless, our results indicate that direct demodulation 

of baseband RF signals using DNNs is feasible. 

 

In conclusion, we have presented a powerful new dataset for digital signals processing 

machine learning tasks in the RF domain. We have also provided a physical transmission channel 

model which enables the training of models that can accomplish new and novel tasks. We describe 

a new deep learning model, specially inspired by and designed for the RF domain, which combines 

an autoencoder convolutional network with a transformer network. We show this hybrid model 

can efficiently accomplish a variety of RF signal processing tasks, namely, automatic modulation 

classification, regression of transmission channel parameters, signal denoising and reconstruction, 

classification of message properties, and direct demodulation of messages.  

 

 
Fig. 7 Accuracy of hybrid model when demodulating signals for three different modulation types 

under a channel with Rayleigh fading and additive white gaussian noise (AWGN). The 

percentages in the legend indicate the model accuracy in the asymptotic limit of high signal-to-

noise ratios (expressed here as energy per symbol to noise power spectral density ratio, Es/N0) 

for each modulation type.  
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Methods 
 

Data Generation 

 

All code was written in Python using the PyTorch deep learning framework. Baseband RF data 

examples are created by the following algorithm: First, an oversampling value (the number of 

time samples per symbol) is randomly sampled within a predefined range. This oversampling 

value (along with the predefined shape of the final data vector) is used to determine the number 

of symbols in the message represented by the data example. Next, a modulation type is selected, 

and a random, complex-valued message representation is generated from the symbols in that 

modulation’s constellation. Then, an excess bandwidth value for the root-raised-cosine (RRC) 

filter is randomly sampled (within a predefined range) and the data example is passed through 

the pulse-shaping, low-pass RRC filter. For all data used in this study, the data rate was used as 

the base frequency unit. 

 

Description of Physical Transmission Channel Model 

 

Carrier phase and frequency offset: Consider a transmitter (Tx) and receiver (Rx) that with 

two independent local RF oscillators. If the two oscillators have a frequency offset of 𝑓 and a 

phase offset of , the in-phase and quadrature components are transformed between Tx and Rx 

(I(t), Q(t) and I’(t), Q’(t), respectively) according to: 

 
 

(
I′(t)

Q′(t)
) = (

cos⁡(2𝑓t + ) −sin⁡(2𝑓t + )
sin⁡(2𝑓t + ) cos⁡(2𝑓t + )

) (
I(t)
Q(t)

)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
(1) 

 

Rayleigh Fading: We use Jakes’ model37 for non-line-of-sight fading to generate a random, 

complex variable to add to the baseband RF signal. The model assumes that N scatterers are 

equally spaced at angles 𝜃𝑛 = 2⁡𝑛/𝑁 around the receiver. This complex variable is given by, 

 
 

x + 𝑖y =
1

√𝑁
∑{cos(2𝜏⁡𝑐𝑜𝑠(𝜃𝑛) + 𝛼𝑛) + 𝑖⁡sin(2𝜏⁡cos⁡(𝜃𝑛) + 𝛽𝑛)}

𝑁

𝑛

 

(2) 

 

Here N is the number of scatterers to sum over, 𝛼𝑛, and 𝛽𝑛 are random phases,  is a 

dimensionless fading strength parameter, and 𝜏 is the dimensionless time. If the maximum 

doppler shift is fD, the total elapsed time per message is TM, and the time variable is t, then  =
⁡fD TM, and 𝜏 =⁡t/TM. Fading transforms the in-phase and quadrature components between Tx and 

Rx (I(t), Q(t) and I’(t), Q’(t), respectively) according to: 

 
 

(
I′(t)

Q′(t)
) = (

x(t) −y(t)
y(t) x(t)

) (
I(t)
Q(t)

) 
(3) 

 

Throughout the manuscript we refer to three distinct channel regimes: harsh, medium, and mild. 

We define these channels explicitly here. 
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Harsh channel:  

 

The harsh channel is used for the automatic modulation classification and number of symbols 

classification tasks. This channel assumes a moderate Rayleigh fading environment, and no 

channel correction between the transmitter and the ML model input at the receiver. The channel 

parameters for each training and validation example are drawn from uniform distributions 

specified in Table 1. 

 

Name Symbol Range (units) 

Fading strength  [0.1,1.0] 

Phase Offset  [-,] (radians) 

Frequency Offset 𝑓 [-0.01,0.01] (Data Rate) 

Signal-to-Noise Ratio SNR [-10,30] (dB) 

Table 1 Summary of parameters for “harsh” transmission channel. 

 

Medium channel: 

 

The medium channel is used for the regression of channel parameters task. This channel assumes 

no Rayleigh fading, and limited channel correction between the transmitter and the ML model 

input at the receiver which limits the phase offset. The channel parameters for each training and 

validation example are drawn from uniform distributions specified in Table 2. 

 

 

Name Symbol Range (units) 

Phase Offset  [-/4,/4] (radians) 

Frequency Offset 𝑓 [-0.01,0.01] (Data Rate) 

Signal-to-Noise Ratio SNR [-2,40] (dB) 

Table 2 Summary of parameters for “medium” transmission channel. 

 

Mild channel: 

 

The mild channel is used for the demodulation task. This channel assumes a moderate Rayleigh 

fading environment, and realistic channel correction between the transmitter and the ML model 

input at the receiver (specifically, we assume the presence of a Costas loop). The channel 

parameters for each training and validation example are drawn from uniform distributions 

specified in Table 3. 

 

Name Symbol Range (units) 

Fading strength  [0.1,1.0] 

Phase Offset  [-10,10] (degrees) 

Frequency Offset 𝑓 [-1e-4,1e-4] (Data Rate) 

Signal-to-Noise Ratio SNR [-10,40] (dB) 

Table 3 Summary of parameters for “mild” transmission channel. 
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Model Layer Layouts and Definitions 

 

Encoder Layers: The encoder consists of alternating Conv1D (a series of Conv1D, 

BatchNorm1D, and activation layers) and MaxPool1D blocks. Explicit block sizes and 

parameters are given in Table 4. L refers to the number of time samples in the input vector.   

 

Block Name Input Output Parameters 

Conv1D (2,L) (128,L) kernel size = 13 

padding = 6 

activation = ReLU 

MaxPool1D (128,L) (128,L/2)  

Conv1D (128,L/2) (256,L/2) kernel size = 13 

padding = 6 

activation = ReLU 

MaxPool1D (256,L/2) (256,L/4)  

Conv1D (256,L/4) (256,L/4) kernel size = 13 

padding = 6 

activation = ReLU 

Conv1D (256,L/4) (256,L/4) kernel size = 13 

padding = 6 

activation = ReLU 

Table 4 Summary of encoder network layers and parameters. 

 

Decoder Layers: The decoder consists of alternating Conv1D (a series of Conv1D, 

BatchNorm1D, and activation layers) and Upsample blocks. Explicit block sizes and parameters 

are given in Table 5. L refers to the number of time samples in the input vector.   

 

Block Name Input Output Parameters 

Conv1D (256,L/4) (128,L/4) kernel size = 13 

padding = 6 

activation =  Leaky 

ReLU 

Upsample (128,L/4) (128,L/2)  

Conv1D (128,L/2) (128,L/2) kernel size = 13 

padding = 6 

activation = Leaky 

ReLU 

Upsample (128,L/2) (128,L)  

Conv1D (128,L) (64,L) kernel size = 13 

padding = 6 

activation = Leaky 

ReLU 

Conv1D (64,L) (2,L) kernel size = 13 

padding = 6 

activation = None 

Table 5 Summary of decoder network layers and parameters. 
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Transformer: We use the Pytorch reformer35 architecture with a hidden dimension of 256, a 

depth of 2, and 8 heads. The reformer implementation was chosen because it uses a memory-

efficient approximation of the full attention matrix. This approximation results in a model that 

ultimately uses much less memory with faster performance for long sequences, without a 

significant reduction in model performance.  

 

Fully Connected Classifier: The output of the transformer is flattened and used as input for a 

fully connected layer with an output size of 1024, followed by BatchNorm1D, ReLU, and 

Dropout layers. The final layer of the classifier is another fully connected layer whose output 

size changes depending on the task at hand. The dropout percentage used throughout is 0.2. 

 

Model Setup and Training 

 

Consider the model, M, pictured in Fig. 2, which takes as inputs a perturbed signal, Rx, a target 

signal, Tx, and some labels, L, and returns a reconstructed signal, Tx’, and some probabilities, L’. 

M consists of an encoder network, E, a decoder network, D, and a classifier network, C. The 

classification loss, ℒ𝐶 , penalizes C for misclassifying a sample’s labels (L ≠  L’) and the 

reconstruction loss, ℒ𝑅 , penalizes D for reconstructing a signal that differs from the target signal 

(Tx ≠ Tx’). A trained model minimizes the total loss, 

 
 

ℒ = ∑𝜆𝐶𝑖 ⁡ℒ𝐶𝑖(𝜃𝑀) +

𝑖

⁡𝜆𝑅⁡ℒ𝑅(𝜃𝑀) 
(4) 

 

where the 𝜆 are weights for each individual loss term and 𝜃𝑀 are parameters of the model. We use 

the same L2 reconstruction loss function for all tasks,  

 
 ℒ𝑅(𝜃𝑀) = 𝑀𝑆𝐸(𝑇𝑥, 𝑇𝑥′(𝜃𝑀)) = |𝑇𝑥 − 𝑇𝑥′(𝜃𝑀)|

2 (5) 

Explicit classifier loss functions for each task are given below. Gradients are calculated via back 

propagation and the total loss is minimized via stochastic gradient descent using the ADAM 

optimizer with a learning rate of 0.001.  

 

Automatic modulation classification: For this task the final output dimension of the classifier is 

set to 13, the number of distinct modulation class types. The position of the highest probability in 

the output, L, corresponds to the predicted modulation class. The classification loss has a single 

term, 

 
 

∑𝜆𝐶𝑖 ⁡ℒ𝐶𝑖(𝜃𝑀) = 𝜆𝐶𝐶𝐸(L, L′(𝜃𝑀))

𝑖

 
(6) 

where CE is the cross-entropy loss function,  

 
 

𝐶𝐸(L, L′(𝜃𝑀)) = −∑𝑣𝑗(L) log(L
′(𝜃𝑀))

𝑁𝑐

𝑗

 
(7) 
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Here, Nc  is the number of possible classes (13 in this case) and 𝑣𝑗(L) is the one-hot encoded vector 

of the true class label.  

 

The model was trained for a total of 128 epochs. For the first 64 epochs, changes to the 

reconstruction loss were penalized with 𝜆𝐶=1 and 𝜆𝑅=0.001. For the last 64 epochs, this restraint 

was removed, and the losses were weighted with 𝜆𝐶=1 and 𝜆𝑅=1. The data was generated and split 

using 214 and 211 examples from each modulation class for training and validation, respectively. 

All data consisted of 512 time-domain samples with oversampling values randomly varying 

between 16-32 samples/symbol. 

 

Regression of channel parameters: For this task the final output dimension of the classifier is set 

to 4. In the classification model, the output (L’) is a set of probabilities, used to infer a discrete 

class label. In contrast, the regression model returns an L’ whose elements are used to infer a set 

of continuous parameter values. In this case, the classification loss (Eq. 4), also has 4 terms, one 

for each of the model outputs 

 
 

∑𝜆𝐶𝑖 ⁡ℒ𝐶𝑖(𝜃𝑀) =

𝑖

∑𝜆𝑖𝑀𝑆𝐸(𝐿𝑖 , 𝐿𝑖′(𝜃𝑀))

4

𝑖=1

 

 

(8) 

 

where MSE is the L2 loss function, 

 
 ℒ𝐶𝑖(𝜃𝑀) = 𝑀𝑆𝐸(𝐿𝑖 , 𝐿𝑖′(𝜃𝑀)) = |(𝐿𝑖 − 𝐿𝑖′(𝜃𝑀)|

2 (9) 

The key to successfully training the regression model is properly constructing L, the targets for the 

model outputs. We use the following values for the model output targets: 

 
 L = (⁡cos()⁡ , ⁡sin()⁡, ⁡100 ∗ 𝑓⁡, SNR⁡) (10) 

These choices scale all values of Li to have magnitudes close to unity. Also, the decision to split 

the phase offset, , into two separate trigonometric outputs helps constrain the final value of  to 

the range (−𝜋, 𝜋) and greatly improves the convergence time and performance of the model. 

 

The model was trained for a total of 500 epochs. The value of each loss term in Eqs. (4) and (8) 

are monitored throughout the training process and the 𝜆𝑖 are updated throughout. A summary of 

loss weighting is shown in Table 6. Briefly, for the first 150 epochs changes to the reconstruction 

loss are heavily penalized with no penalty to any other terms. For the next 150 epochs, changes to 

both reconstruction and SNR are penalized. For the next 100 epochs, the phase and frequency 

offset terms are slightly adjusted. For the final 100 epochs, all 𝜆𝑖  are set to 1. The data was 

generated and split using 217 and 213 examples from the QPSK modulation class for training and 

validation, respectively. All data consisted of 512 time-domain samples with oversampling values 

randomly varied between 8-16 samples/symbol. 
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Epoch Numbers 𝝀𝑹 𝝀𝑪𝟏(𝐜𝐨𝐬()) 𝝀𝑪𝟐 (𝐬𝐢𝐧()) 𝝀𝑪𝟑(𝟏𝟎𝟎 ∗ 𝒇) 𝝀𝑪𝟒(𝐒𝐍𝐑) 
0-150 0.001 1 1 1 1 

150-300 0.001 1 1 1 0.01 

300-400 0.001 1 1 0.2 0.01 

400-500 1 1 1 1 1 

Table 6 Summary of loss term weighting during training epochs for regression of channel 

parameters task. 

 

Number of message symbols classification: The model was trained for 8 epochs with 𝜆𝐶 = ⁡𝜆𝑅 =
1 for all epochs. The data was generated and split using 214 and 211 examples from each of the 13 

modulation classes for training and validation, respectively. All data consisted of 512 time-domain 

samples with the number of symbols per message being drawn from a uniform distribution and 

varying between 16-32 symbols/message. For this task the oversampling value is derived from the 

number of symbols per message instead of being directly drawn from a uniform distribution, as is 

the case for all other tasks. 

 

The final output dimension of the classifier is set to 17, the number of possible symbols in a 

message. The position of the highest probability in the output, L, corresponds to the predicted 

number of symbols/message. The classification loss has a single term, 

 
 

∑𝜆𝐶𝑖 ⁡ℒ𝐶𝑖(𝜃𝑀) = 𝜆𝐶𝐶𝐸(L, L′(𝜃𝑀))

𝑖

 
(11) 

where CE is the cross-entropy loss function,  

 
 

𝐶𝐸(L, L′(𝜃𝑀)) = −∑𝑣𝑗(L) log(L
′(𝜃𝑀))

𝑁𝑐

𝑗

 
(12) 

Here, Nc  is the number of possible classes (17 in this case) and 𝑣𝑗(L) is the one-hot encoded vector 

of the true class label. 

 

Signal demodulation: 

  

For this task the final output dimension of the classifier is set to 256k, where k is the number of 

symbols in the modulation constellation. Each data example consists of 256 symbols and each 

symbol is treated as an individual k-class classification problem. In this case, the classification loss 

(Eq. 4), has 256 terms, one for each symbol of the message 

 
 

∑𝜆𝐶𝑖 ⁡ℒ𝐶𝑖(𝜃𝑀) = ⁡ 𝜆𝐶
𝑖

∑𝐶𝐸(𝐿𝑖 , 𝐿𝑖′(𝜃𝑀))

256

𝑖=1

 

(13) 

 

where CE is the cross-entropy loss function, 

 
 

𝐶𝐸(L, L′(𝜃𝑀)) = −∑𝑣𝑗(L) log(L
′(𝜃𝑀))

𝑘

𝑗

 

(14) 
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Here, k is the number of possible classes (2 for BPSK, 4 for QPSK, and 16 for 16-QAM) and 𝑣𝑗(L) 

is the one-hot encoded vector of the true message symbols.  

 

The model was trained for a total of 256 epochs with 𝜆𝐶 = 1 and 𝜆𝑅 = 0.01 for the first 128 

epochs and 𝜆𝐶 =⁡ 𝜆𝑅 = 1 for the final 128 epochs. The data was generated and split using 216 and 

213 examples for training and validation, respectively for each modulation type. All data consisted 

of 1024 time-domain samples with an oversampling of 4. 

 

Data Availability 

 

Code for dataset generation and transmission channel modeling are available at 

https://github.com/pnnl/DieselWolf. Model definitions and analysis code that were used in this 

study are available from the corresponding authors upon reasonable request. 
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